Paper ID: 2408.16999
A Tighter Convergence Proof of Reverse Experience Replay
Nan Jiang, Jinzhao Li, Yexiang Xue
In reinforcement learning, Reverse Experience Replay (RER) is a recently proposed algorithm that attains better sample complexity than the classic experience replay method. RER requires the learning algorithm to update the parameters through consecutive state-action-reward tuples in reverse order. However, the most recent theoretical analysis only holds for a minimal learning rate and short consecutive steps, which converge slower than those large learning rate algorithms without RER. In view of this theoretical and empirical gap, we provide a tighter analysis that mitigates the limitation on the learning rate and the length of consecutive steps. Furthermore, we show theoretically that RER converges with a larger learning rate and a longer sequence.
Submitted: Aug 30, 2024