Paper ID: 2408.17064

Instant Adversarial Purification with Adversarial Consistency Distillation

Chun Tong Lei, Hon Ming Yam, Zhongliang Guo, Chun Pong Lau

Neural networks, despite their remarkable performance in widespread applications, including image classification, are also known to be vulnerable to subtle adversarial noise. Although some diffusion-based purification methods have been proposed, for example, DiffPure, those methods are time-consuming. In this paper, we propose One Step Control Purification (OSCP), a diffusion-based purification model that can purify the adversarial image in one Neural Function Evaluation (NFE) in diffusion models. We use Latent Consistency Model (LCM) and ControlNet for our one-step purification. OSCP is computationally friendly and time efficient compared to other diffusion-based purification methods; we achieve defense success rate of 74.19\% on ImageNet, only requiring 0.1s for each purification. Moreover, there is a fundamental incongruence between consistency distillation and adversarial perturbation. To address this ontological dissonance, we propose Gaussian Adversarial Noise Distillation (GAND), a novel consistency distillation framework that facilitates a more nuanced reconciliation of the latent space dynamics, effectively bridging the natural and adversarial manifolds. Our experiments show that the GAND does not need a Full Fine Tune (FFT); PEFT, e.g., LoRA is sufficient.

Submitted: Aug 30, 2024