Paper ID: 2408.17222
How Could Generative AI Support Compliance with the EU AI Act? A Review for Safe Automated Driving Perception
Mert Keser, Youssef Shoeb, Alois Knoll
Deep Neural Networks (DNNs) have become central for the perception functions of autonomous vehicles, substantially enhancing their ability to understand and interpret the environment. However, these systems exhibit inherent limitations such as brittleness, opacity, and unpredictable behavior in out-of-distribution scenarios. The European Union (EU) Artificial Intelligence (AI) Act, as a pioneering legislative framework, aims to address these challenges by establishing stringent norms and standards for AI systems, including those used in autonomous driving (AD), which are categorized as high-risk AI. In this work, we explore how the newly available generative AI models can potentially support addressing upcoming regulatory requirements in AD perception, particularly with respect to safety. This short review paper summarizes the requirements arising from the EU AI Act regarding DNN-based perception systems and systematically categorizes existing generative AI applications in AD. While generative AI models show promise in addressing some of the EU AI Acts requirements, such as transparency and robustness, this review examines their potential benefits and discusses how developers could leverage these methods to enhance compliance with the Act. The paper also highlights areas where further research is needed to ensure reliable and safe integration of these technologies.
Submitted: Aug 30, 2024