Paper ID: 2409.00052

AI-Powered Dynamic Fault Detection and Performance Assessment in Photovoltaic Systems

Nelson Salazar-Pena, Alejandra Tabares, Andres Gonzalez-Mancera

The intermittent nature of photovoltaic (PV) solar energy, driven by variable weather, leads to power losses of 10-70% and an average energy production decrease of 25%. Accurate loss characterization and fault detection are crucial for reliable PV system performance and efficiency, integrating this data into control signal monitoring systems. Computational modeling of PV systems supports technological, economic, and performance analyses, but current models are often rigid, limiting advanced performance optimization and innovation. Conventional fault detection strategies are costly and often yield unreliable results due to complex data signal profiles. Artificial intelligence (AI), especially machine learning algorithms, offers improved fault detection by analyzing relationships between input parameters (e.g., meteorological and electrical) and output metrics (e.g., production). Once trained, these models can effectively identify faults by detecting deviations from expected performance. This research presents a computational model using the PVlib library in Python, incorporating a dynamic loss quantification algorithm that processes meteorological, operational, and technical data. An artificial neural network (ANN) trained on synthetic datasets with a five-minute resolution simulates real-world PV system faults. A dynamic threshold definition for fault detection is based on historical data from a PV system at Universidad de los Andes. Key contributions include: (i) a PV system model with a mean absolute error of 6.0% in daily energy estimation; (ii) dynamic loss quantification without specialized equipment; (iii) an AI-based algorithm for technical parameter estimation, avoiding special monitoring devices; and (iv) a fault detection model achieving 82.2% mean accuracy and 92.6% maximum accuracy.

Submitted: Aug 19, 2024