Paper ID: 2409.00054

Automating Knowledge Discovery from Scientific Literature via LLMs: A Dual-Agent Approach with Progressive Ontology Prompting

Yuting Hu, Dancheng Liu, Qingyun Wang, Charles Yu, Heng Ji, Jinjun Xiong

To address the challenge of automating knowledge discovery from a vast volume of literature, in this paper, we introduce a novel framework based on large language models (LLMs) that combines a progressive ontology prompting (POP) algorithm with a dual-agent system, named LLM-Duo, designed to enhance the automation of knowledge extraction from scientific articles. The POP algorithm utilizes a prioritized breadth-first search (BFS) across a predefined ontology to generate structured prompt templates and action orders, thereby guiding LLMs to discover knowledge in an automatic manner. Additionally, our LLM-Duo employs two specialized LLM agents: an explorer and an evaluator. These two agents work collaboratively and adversarially to enhance the reliability of the discovery and annotation processes. Experiments demonstrate that our method outperforms advanced baselines, enabling more accurate and complete annotations. To validate the effectiveness of our method in real-world scenarios, we employ our method in a case study of speech-language intervention discovery. Our method identifies 2,421 interventions from 64,177 research articles in the speech-language therapy domain. We curate these findings into a publicly accessible intervention knowledge base that holds significant potential to benefit the speech-language therapy community.

Submitted: Aug 20, 2024