Paper ID: 2409.00061
Enhancing Natural Language Inference Performance with Knowledge Graph for COVID-19 Automated Fact-Checking in Indonesian Language
Arief Purnama Muharram, Ayu Purwarianti
Automated fact-checking is a key strategy to overcome the spread of COVID-19 misinformation on the internet. These systems typically leverage deep learning approaches through Natural Language Inference (NLI) to verify the truthfulness of information based on supporting evidence. However, one challenge that arises in deep learning is performance stagnation due to a lack of knowledge during training. This study proposes using a Knowledge Graph (KG) as external knowledge to enhance NLI performance for automated COVID-19 fact-checking in the Indonesian language. The proposed model architecture comprises three modules: a fact module, an NLI module, and a classifier module. The fact module processes information from the KG, while the NLI module handles semantic relationships between the given premise and hypothesis. The representation vectors from both modules are concatenated and fed into the classifier module to produce the final result. The model was trained using the generated Indonesian COVID-19 fact-checking dataset and the COVID-19 KG Bahasa Indonesia. Our study demonstrates that incorporating KGs can significantly improve NLI performance in fact-checking, achieving the best accuracy of 0,8616. This suggests that KGs are a valuable component for enhancing NLI performance in automated fact-checking.
Submitted: Aug 22, 2024