Paper ID: 2409.00093

Towards Sustainable Personalized On-Device Human Activity Recognition with TinyML and Cloud-Enabled Auto Deployment

Bidyut Saha, Riya Samanta, Soumya K Ghosh, Ram Babu Roy

Human activity recognition (HAR) holds immense potential for transforming health and fitness monitoring, yet challenges persist in achieving personalized outcomes and sustainability for on-device continuous inferences. This work introduces a wrist-worn smart band designed to address these challenges through a novel combination of on-device TinyML-driven computing and cloud-enabled auto-deployment. Leveraging inertial measurement unit (IMU) sensors and a customized 1D Convolutional Neural Network (CNN) for personalized HAR, users can tailor activity classes to their unique movement styles with minimal calibration. By utilising TinyML for local computations, the smart band reduces the necessity for constant data transmission and radio communication, which in turn lowers power consumption and reduces carbon footprint. This method also enhances the privacy and security of user data by limiting its transmission. Through transfer learning and fine-tuning on user-specific data, the system achieves a 37\% increase in accuracy over generalized models in personalized settings. Evaluation using three benchmark datasets, WISDM, PAMAP2, and the BandX demonstrates its effectiveness across various activity domains. Additionally, this work presents a cloud-supported framework for the automatic deployment of TinyML models to remote wearables, enabling seamless customization and on-device inference, even with limited target data. By combining personalized HAR with sustainable strategies for on-device continuous inferences, this system represents a promising step towards fostering healthier and more sustainable societies worldwide.

Submitted: Aug 26, 2024