Paper ID: 2409.01354
Explanation Space: A New Perspective into Time Series Interpretability
Shahbaz Rezaei, Xin Liu
Human understandable explanation of deep learning models is necessary for many critical and sensitive applications. Unlike image or tabular data where the importance of each input feature (for the classifier's decision) can be directly projected into the input, time series distinguishable features (e.g. dominant frequency) are often hard to manifest in time domain for a user to easily understand. Moreover, most explanation methods require a baseline value as an indication of the absence of any feature. However, the notion of lack of feature, which is often defined as black pixels for vision tasks or zero/mean values for tabular data, is not well-defined in time series. Despite the adoption of explainable AI methods (XAI) from tabular and vision domain into time series domain, these differences limit the application of these XAI methods in practice. In this paper, we propose a simple yet effective method that allows a model originally trained on time domain to be interpreted in other explanation spaces using existing methods. We suggest four explanation spaces that each can potentially alleviate these issues in certain types of time series. Our method can be readily adopted in existing platforms without any change to trained models or XAI methods.
Submitted: Sep 2, 2024