Paper ID: 2409.01728

Shuffle Mamba: State Space Models with Random Shuffle for Multi-Modal Image Fusion

Ke Cao, Xuanhua He, Tao Hu, Chengjun Xie, Jie Zhang, Man Zhou, Danfeng Hong

Multi-modal image fusion integrates complementary information from different modalities to produce enhanced and informative images. Although State-Space Models, such as Mamba, are proficient in long-range modeling with linear complexity, most Mamba-based approaches use fixed scanning strategies, which can introduce biased prior information. To mitigate this issue, we propose a novel Bayesian-inspired scanning strategy called Random Shuffle, supplemented by an theoretically-feasible inverse shuffle to maintain information coordination invariance, aiming to eliminate biases associated with fixed sequence scanning. Based on this transformation pair, we customized the Shuffle Mamba Framework, penetrating modality-aware information representation and cross-modality information interaction across spatial and channel axes to ensure robust interaction and an unbiased global receptive field for multi-modal image fusion. Furthermore, we develop a testing methodology based on Monte-Carlo averaging to ensure the model's output aligns more closely with expected results. Extensive experiments across multiple multi-modal image fusion tasks demonstrate the effectiveness of our proposed method, yielding excellent fusion quality over state-of-the-art alternatives. Code will be available upon acceptance.

Submitted: Sep 3, 2024