Paper ID: 2409.02629
AdvSecureNet: A Python Toolkit for Adversarial Machine Learning
Melih Catal, Manuel Günther
Machine learning models are vulnerable to adversarial attacks. Several tools have been developed to research these vulnerabilities, but they often lack comprehensive features and flexibility. We introduce AdvSecureNet, a PyTorch based toolkit for adversarial machine learning that is the first to natively support multi-GPU setups for attacks, defenses, and evaluation. It is the first toolkit that supports both CLI and API interfaces and external YAML configuration files to enhance versatility and reproducibility. The toolkit includes multiple attacks, defenses and evaluation metrics. Rigiorous software engineering practices are followed to ensure high code quality and maintainability. The project is available as an open-source project on GitHub at this https URL and installable via PyPI.
Submitted: Sep 4, 2024