Paper ID: 2409.03052
An Introduction to Centralized Training for Decentralized Execution in Cooperative Multi-Agent Reinforcement Learning
Christopher Amato
Multi-agent reinforcement learning (MARL) has exploded in popularity in recent years. Many approaches have been developed but they can be divided into three main types: centralized training and execution (CTE), centralized training for decentralized execution (CTDE), and Decentralized training and execution (DTE). CTDE methods are the most common as they can use centralized information during training but execute in a decentralized manner -- using only information available to that agent during execution. CTDE is the only paradigm that requires a separate training phase where any available information (e.g., other agent policies, underlying states) can be used. As a result, they can be more scalable than CTE methods, do not require communication during execution, and can often perform well. CTDE fits most naturally with the cooperative case, but can be potentially applied in competitive or mixed settings depending on what information is assumed to be observed. This text is an introduction to CTDE in cooperative MARL. It is meant to explain the setting, basic concepts, and common methods. It does not cover all work in CTDE MARL as the subarea is quite extensive. I have included work that I believe is important for understanding the main concepts in the subarea and apologize to those that I have omitted.
Submitted: Sep 4, 2024