Paper ID: 2409.03147

Addressing the Gaps in Early Dementia Detection: A Path Towards Enhanced Diagnostic Models through Machine Learning

Juan A. Berrios Moya

The rapid global aging trend has led to an increase in dementia cases, including Alzheimer's disease, underscoring the urgent need for early and accurate diagnostic methods. Traditional diagnostic techniques, such as cognitive tests, neuroimaging, and biomarker analysis, face significant limitations in sensitivity, accessibility, and cost, particularly in the early stages. This study explores the potential of machine learning (ML) as a transformative approach to enhance early dementia detection by leveraging ML models to analyze and integrate complex multimodal datasets, including cognitive assessments, neuroimaging, and genetic information. A comprehensive review of existing literature was conducted to evaluate various ML models, including supervised learning, deep learning, and advanced techniques such as ensemble learning and transformer models, assessing their accuracy, interpretability, and potential for clinical integration. The findings indicate that while ML models show significant promise in improving diagnostic precision and enabling earlier interventions, challenges remain in their generalizability, interpretability, and ethical deployment. This research concludes by outlining future directions aimed at enhancing the clinical utility of ML models in dementia detection, emphasizing interdisciplinary collaboration and ethically sound frameworks to improve early detection and intervention strategies for Alzheimer's disease and other forms of dementia.

Submitted: Sep 5, 2024