Paper ID: 2409.03219

Content Moderation by LLM: From Accuracy to Legitimacy

Tao Huang

One trending application of LLM (large language model) is to use it for content moderation in online platforms. Most current studies on this application have focused on the metric of accuracy - the extent to which LLM makes correct decisions about content. This article argues that accuracy is insufficient and misleading, because it fails to grasp the distinction between easy cases and hard cases as well as the inevitable trade-offs in achieving higher accuracy. Closer examination reveals that content moderation is a constitutive part of platform governance, the key of which is to gain and enhance legitimacy. Instead of making moderation decisions correct, the chief goal of LLM is to make them legitimate. In this regard, this article proposes a paradigm shift from the single benchmark of accuracy towards a legitimacy-based framework of evaluating the performance of LLM moderators. The framework suggests that for easy cases, the key is to ensure accuracy, speed and transparency, while for hard cases, what matters is reasoned justification and user participation. Examined under this framework, LLM's real potential in moderation is not accuracy improvement. Rather, LLM can better contribute in four other aspects: to conduct screening of hard cases from easy cases, to provide quality explanations for moderation decisions, to assist human reviewers in getting more contextual information, and to facilitate user participation in a more interactive way. Using normative theories from law and social sciences to critically assess the new technological application, this article seeks to redefine LLM's role in content moderation and redirect relevant research in this field.

Submitted: Sep 5, 2024