Paper ID: 2409.03948
The Veracity Problem: Detecting False Information and its Propagation on Online Social Media Networks
Sarah Condran
Detecting false information on social media is critical in mitigating its negative societal impacts. To reduce the propagation of false information, automated detection provide scalable, unbiased, and cost-effective methods. However, there are three potential research areas identified which once solved improve detection. First, current AI-based solutions often provide a uni-dimensional analysis on a complex, multi-dimensional issue, with solutions differing based on the features used. Furthermore, these methods do not account for the temporal and dynamic changes observed within the document's life cycle. Second, there has been little research on the detection of coordinated information campaigns and in understanding the intent of the actors and the campaign. Thirdly, there is a lack of consideration of cross-platform analysis, with existing datasets focusing on a single platform, such as X, and detection models designed for specific platform. This work aims to develop methods for effective detection of false information and its propagation. To this end, firstly we aim to propose the creation of an ensemble multi-faceted framework that leverages multiple aspects of false information. Secondly, we propose a method to identify actors and their intent when working in coordination to manipulate a narrative. Thirdly, we aim to analyse the impact of cross-platform interactions on the propagation of false information via the creation of a new dataset.
Submitted: Sep 6, 2024