Paper ID: 2409.04116

Smooth-edged Perturbations Improve Perturbation-based Image Explanations

Gustav Grund Pihlgren, Kary Främling

Perturbation-based post-hoc image explanation methods are commonly used to explain image prediction models by perturbing parts of the input to measure how those parts affect the output. Due to the intractability of perturbing each pixel individually, images are typically attributed to larger segments. The Randomized Input Sampling for Explanations (RISE) method solved this issue by using smooth perturbation masks. While this method has proven effective and popular, it has not been investigated which parts of the method are responsible for its success. This work tests many combinations of mask sampling, segmentation techniques, smoothing, and attribution calculation. The results show that the RISE-style pixel attribution is beneficial to all evaluated methods. Furthermore, it is shown that attribution calculation is the least impactful parameter. The implementation of this work is available online: this https URL.

Submitted: Sep 6, 2024