Paper ID: 2409.04964

Evaluation of Google Translate for Mandarin Chinese translation using sentiment and semantic analysis

Xuechun Wang, Rodney Beard, Rohitash Chandra

Machine translation using large language models (LLMs) is having a significant global impact, making communication easier. Mandarin Chinese is the official language used for communication by the government, education institutes, and media in China. In this study, we provide an automated assessment of machine translation models with human experts using sentiment and semantic analysis. In order to demonstrate our framework, we select classic early twentieth-century novel 'The True Story of Ah Q' with selected Mandarin Chinese to English translations. We also us Google Translate to generate the given text into English and then conduct a chapter-wise sentiment analysis and semantic analysis to compare the extracted sentiments across the different translations. We utilise LLMs for semantic and sentiment analysis. Our results indicate that the precision of Google Translate differs both in terms of semantic and sentiment analysis when compared to human expert translations. We find that Google Translate is unable to translate some of the specific words or phrases in Chinese, such as Chinese traditional allusions. The mistranslations have to its lack of contextual significance and historical knowledge of China. Thus, this framework brought us some new insights about machine translation for Chinese Mandarin. The future work can explore other languages or types of texts with this framework.

Submitted: Sep 8, 2024