Paper ID: 2409.04976

HYDRA: Hybrid Data Multiplexing and Run-time Layer Configurable DNN Accelerator

Sonu Kumar, Komal Gupta, Gopal Raut, Mukul Lokhande, Santosh Kumar Vishvakarma

Deep neural networks (DNNs) offer plenty of challenges in executing efficient computation at edge nodes, primarily due to the huge hardware resource demands. The article proposes HYDRA, hybrid data multiplexing, and runtime layer configurable DNN accelerators to overcome the drawbacks. The work proposes a layer-multiplexed approach, which further reuses a single activation function within the execution of a single layer with improved Fused-Multiply-Accumulate (FMA). The proposed approach works in iterative mode to reuse the same hardware and execute different layers in a configurable fashion. The proposed architectures achieve reductions over 90% of power consumption and resource utilization improvements of state-of-the-art works, with 35.21 TOPSW. The proposed architecture reduces the area overhead (N-1) times required in bandwidth, AF and layer architecture. This work shows HYDRA architecture supports optimal DNN computations while improving performance on resource-constrained edge devices.

Submitted: Sep 8, 2024