Paper ID: 2409.05359

FedBrain-Distill: Communication-Efficient Federated Brain Tumor Classification Using Ensemble Knowledge Distillation on Non-IID Data

Rasoul Jafari Gohari, Laya Aliahmadipour, Ezat Valipour

Brain is one the most complex organs in the human body. Due to its complexity, classification of brain tumors still poses a significant challenge, making brain tumors a particularly serious medical issue. Techniques such as Machine Learning (ML) coupled with Magnetic Resonance Imaging (MRI) have paved the way for doctors and medical institutions to classify different types of tumors. However, these techniques suffer from limitations that violate patients privacy. Federated Learning (FL) has recently been introduced to solve such an issue, but the FL itself suffers from limitations like communication costs and dependencies on model architecture, forcing all models to have identical architectures. In this paper, we propose FedBrain-Distill, an approach that leverages Knowledge Distillation (KD) in an FL setting that maintains the users privacy and ensures the independence of FL clients in terms of model architecture. FedBrain-Distill uses an ensemble of teachers that distill their knowledge to a simple student model. The evaluation of FedBrain-Distill demonstrated high-accuracy results for both Independent and Identically Distributed (IID) and non-IID data with substantial low communication costs on the real-world Figshare brain tumor dataset. It is worth mentioning that we used Dirichlet distribution to partition the data into IID and non-IID data. All the implementation details are accessible through our Github repository.

Submitted: Sep 9, 2024