Paper ID: 2409.05531

HMAFlow: Learning More Accurate Optical Flow via Hierarchical Motion Field Alignment

Dianbo Ma, Kousuke Imamura, Ziyan Gao, Xiangjie Wang, Satoshi Yamane

Optical flow estimation is a fundamental and long-standing visual task. In this work, we present a novel method, dubbed HMAFlow, to improve optical flow estimation in these tough scenes, especially with small objects. The proposed model mainly consists of two core components: a Hierarchical Motion Field Alignment (HMA) module and a Correlation Self-Attention (CSA) module. In addition, we rebuild 4D cost volumes by employing a Multi-Scale Correlation Search (MCS) layer and replacing average pooling in common cost volumes with an search strategy using multiple search ranges. Experimental results demonstrate that our model achieves the best generalization performance in comparison to other state-of-the-art methods. Specifically, compared with RAFT, our method achieves relative error reductions of 14.2% and 3.4% on the clean pass and final pass of the Sintel online benchmark, respectively. On the KITTI test benchmark, HMAFlow surpasses RAFT and GMA in the Fl-all metric by a relative margin of 6.8% and 7.7%, respectively. To facilitate future research, our code will be made available at this https URL.

Submitted: Sep 9, 2024