Paper ID: 2409.05674
Evaluation of real-time transcriptions using end-to-end ASR models
Carlos Arriaga, Alejandro Pozo, Javier Conde, Alvaro Alonso
Automatic Speech Recognition (ASR) or Speech-to-text (STT) has greatly evolved in the last few years. Traditional architectures based on pipelines have been replaced by joint end-to-end (E2E) architectures that simplify and streamline the model training process. In addition, new AI training methods, such as weak-supervised learning have reduced the need for high-quality audio datasets for model training. However, despite all these advancements, little to no research has been done on real-time transcription. In real-time scenarios, the audio is not pre-recorded, and the input audio must be fragmented to be processed by the ASR systems. To achieve real-time requirements, these fragments must be as short as possible to reduce latency. However, audio cannot be split at any point as dividing an utterance into two separate fragments will generate an incorrect transcription. Also, shorter fragments provide less context for the ASR model. For this reason, it is necessary to design and test different splitting algorithms to optimize the quality and delay of the resulting transcription. In this paper, three audio splitting algorithms are evaluated with different ASR models to determine their impact on both the quality of the transcription and the end-to-end delay. The algorithms are fragmentation at fixed intervals, voice activity detection (VAD), and fragmentation with feedback. The results are compared to the performance of the same model, without audio fragmentation, to determine the effects of this division. The results show that VAD fragmentation provides the best quality with the highest delay, whereas fragmentation at fixed intervals provides the lowest quality and the lowest delay. The newly proposed feedback algorithm exchanges a 2-4% increase in WER for a reduction of 1.5-2s delay, respectively, to the VAD splitting.
Submitted: Sep 9, 2024