Paper ID: 2409.05933

Self-Supervised State Space Model for Real-Time Traffic Accident Prediction Using eKAN Networks

Xin Tan, Meng Zhao

Accurate prediction of traffic accidents across different times and regions is vital for public safety. However, existing methods face two key challenges: 1) Generalization: Current models rely heavily on manually constructed multi-view structures, like POI distributions and road network densities, which are labor-intensive and difficult to scale across cities. 2) Real-Time Performance: While some methods improve accuracy with complex architectures, they often incur high computational costs, limiting their real-time applicability. To address these challenges, we propose SSL-eKamba, an efficient self-supervised framework for traffic accident prediction. To enhance generalization, we design two self-supervised auxiliary tasks that adaptively improve traffic pattern representation through spatiotemporal discrepancy awareness. For real-time performance, we introduce eKamba, an efficient model that redesigns the Kolmogorov-Arnold Network (KAN) architecture. This involves using learnable univariate functions for input activation and applying a selective mechanism (Selective SSM) to capture multi-variate correlations, thereby improving computational efficiency. Extensive experiments on two real-world datasets demonstrate that SSL-eKamba consistently outperforms state-of-the-art baselines. This framework may also offer new insights for other spatiotemporal tasks. Our source code is publicly available at this http URL.

Submitted: Sep 9, 2024