Paper ID: 2409.06518
Questioning Internal Knowledge Structure of Large Language Models Through the Lens of the Olympic Games
Juhwan Choi, YoungBin Kim
Large language models (LLMs) have become a dominant approach in natural language processing, yet their internal knowledge structures remain largely unexplored. In this paper, we analyze the internal knowledge structures of LLMs using historical medal tallies from the Olympic Games. We task the models with providing the medal counts for each team and identifying which teams achieved specific rankings. Our results reveal that while state-of-the-art LLMs perform remarkably well in reporting medal counts for individual teams, they struggle significantly with questions about specific rankings. This suggests that the internal knowledge structures of LLMs are fundamentally different from those of humans, who can easily infer rankings from known medal counts. To support further research, we publicly release our code, dataset, and model outputs.
Submitted: Sep 10, 2024