Paper ID: 2409.06690

Benchmarking Sub-Genre Classification For Mainstage Dance Music

Hongzhi Shu, Xinglin Li, Hongyu Jiang, Minghao Fu, Xinyu Li

Music classification, with a wide range of applications, is one of the most prominent tasks in music information retrieval. To address the absence of comprehensive datasets and high-performing methods in the classification of mainstage dance music, this work introduces a novel benchmark comprising a new dataset and a baseline. Our dataset extends the number of sub-genres to cover most recent mainstage live sets by top DJs worldwide in music festivals. A continuous soft labeling approach is employed to account for tracks that span multiple sub-genres, preserving the inherent sophistication. For the baseline, we developed deep learning models that outperform current state-of-the-art multimodel language models, which struggle to identify house music sub-genres, emphasizing the need for specialized models trained on fine-grained datasets. Our benchmark is applicable to serve for application scenarios such as music recommendation, DJ set curation, and interactive multimedia, where we also provide video demos. Our code is on \url{https://anonymous.4open.science/r/Mainstage-EDM-Benchmark/}.

Submitted: Sep 10, 2024