Paper ID: 2409.06998
Learning Personalized Scoping for Graph Neural Networks under Heterophily
Gangda Deng, Hongkuan Zhou, Rajgopal Kannan, Viktor Prasanna
Heterophilous graphs, where dissimilar nodes tend to connect, pose a challenge for graph neural networks (GNNs) as their superior performance typically comes from aggregating homophilous information. Increasing the GNN depth can expand the scope (i.e., receptive field), potentially finding homophily from the higher-order neighborhoods. However, uniformly expanding the scope results in subpar performance since real-world web graphs often exhibit homophily disparity between nodes. An ideal way is personalized scopes, allowing nodes to have varying scope sizes. Existing methods typically add node-adaptive weights for each hop. Although expressive, they inevitably suffer from severe overfitting. To address this issue, we formalize personalized scoping as a separate scope classification problem that overcomes GNN overfitting in node classification. Specifically, we predict the optimal GNN depth for each node. Our theoretical and empirical analysis suggests that accurately predicting the depth can significantly enhance generalization. We further propose Adaptive Scope (AS), a lightweight approach that only participates in GNN inference. AS encodes structural patterns and predicts the depth to select the best model for each node's prediction. Experimental results show that AS is highly flexible with various GNN architectures across a wide range of datasets while significantly improving accuracy.
Submitted: Sep 11, 2024