Paper ID: 2409.07226
Muskits-ESPnet: A Comprehensive Toolkit for Singing Voice Synthesis in New Paradigm
Yuning Wu, Jiatong Shi, Yifeng Yu, Yuxun Tang, Tao Qian, Yueqian Lin, Jionghao Han, Xinyi Bai, Shinji Watanabe, Qin Jin
This research presents Muskits-ESPnet, a versatile toolkit that introduces new paradigms to Singing Voice Synthesis (SVS) through the application of pretrained audio models in both continuous and discrete approaches. Specifically, we explore discrete representations derived from SSL models and audio codecs and offer significant advantages in versatility and intelligence, supporting multi-format inputs and adaptable data processing workflows for various SVS models. The toolkit features automatic music score error detection and correction, as well as a perception auto-evaluation module to imitate human subjective evaluating scores. Muskits-ESPnet is available at \url{this https URL}.
Submitted: Sep 11, 2024