Paper ID: 2409.07322
Three-Dimensional, Multimodal Synchrotron Data for Machine Learning Applications
Calum Green, Sharif Ahmed, Shashidhara Marathe, Liam Perera, Alberto Leonardi, Killian Gmyrek, Daniele Dini, James Le Houx
Machine learning techniques are being increasingly applied in medical and physical sciences across a variety of imaging modalities; however, an important issue when developing these tools is the availability of good quality training data. Here we present a unique, multimodal synchrotron dataset of a bespoke zinc-doped Zeolite 13X sample that can be used to develop advanced deep learning and data fusion pipelines. Multi-resolution micro X-ray computed tomography was performed on a zinc-doped Zeolite 13X fragment to characterise its pores and features, before spatially resolved X-ray diffraction computed tomography was carried out to characterise the homogeneous distribution of sodium and zinc phases. Zinc absorption was controlled to create a simple, spatially isolated, two-phase material. Both raw and processed data is available as a series of Zenodo entries. Altogether we present a spatially resolved, three-dimensional, multimodal, multi-resolution dataset that can be used for the development of machine learning techniques. Such techniques include development of super-resolution, multimodal data fusion, and 3D reconstruction algorithm development.
Submitted: Sep 11, 2024