Paper ID: 2409.07495

Validation of Practicality for CSI Sensing Utilizing Machine Learning

Tomoya Tanaka, Ayumu Yabuki, Mizuki Funakoshi, Ryo Yonemoto

In this study, we leveraged Channel State Information (CSI), commonly utilized in WLAN communication, as training data to develop and evaluate five distinct machine learning models for recognizing human postures: standing, sitting, and lying down. The models we employed were: (i) Linear Discriminant Analysis, (ii) Naive Bayes-Support Vector Machine, (iii) Kernel-Support Vector Machine, (iv) Random Forest, and (v) Deep Learning. We systematically analyzed how the accuracy of these models varied with different amounts of training data. Additionally, to assess their spatial generalization capabilities, we evaluated the models' performance in a setting distinct from the one used for data collection. The experimental findings indicated that while two models -- (ii) Naive Bayes-Support Vector Machine and (v) Deep Learning -- achieved 85% or more accuracy in the original setting, their accuracy dropped to approximately 30% when applied in a different environment. These results underscore that although CSI-based machine learning models can attain high accuracy within a consistent spatial structure, their performance diminishes considerably with changes in spatial conditions, highlighting a significant challenge in their generalization capabilities.

Submitted: Sep 9, 2024