Paper ID: 2409.07964
WirelessAgent: Large Language Model Agents for Intelligent Wireless Networks
Jingwen Tong, Jiawei Shao, Qiong Wu, Wei Guo, Zijian Li, Zehong Lin, Jun Zhang
Wireless networks are increasingly facing challenges due to their expanding scale and complexity. These challenges underscore the need for advanced AI-driven strategies, particularly in the upcoming 6G networks. In this article, we introduce WirelessAgent, a novel approach leveraging large language models (LLMs) to develop AI agents capable of managing complex tasks in wireless networks. It can effectively improve network performance through advanced reasoning, multimodal data processing, and autonomous decision making. Thereafter, we demonstrate the practical applicability and benefits of WirelessAgent for network slicing management. The experimental results show that WirelessAgent is capable of accurately understanding user intent, effectively allocating slice resources, and consistently maintaining optimal performance.
Submitted: Sep 12, 2024