Paper ID: 2409.08290

Reconsidering the energy efficiency of spiking neural networks

Zhanglu Yan, Zhenyu Bai, Weng-Fai Wong

Spiking neural networks (SNNs) are generally regarded as more energy-efficient because they do not use multiplications. However, most SNN works only consider the counting of additions to evaluate energy consumption, neglecting other overheads such as memory accesses and data movement operations. This oversight can lead to a misleading perception of efficiency, especially when state-of-the-art SNN accelerators operate with very small time window sizes. In this paper, we present a detailed comparison of the energy consumption of artificial neural networks (ANNs) and SNNs from a hardware perspective. We provide accurate formulas for energy consumption based on classical multi-level memory hierarchy architectures, commonly used neuromorphic dataflow architectures, and our proposed improved spatial-dataflow architecture. Our research demonstrates that to achieve comparable accuracy and greater energy efficiency than ANNs, SNNs require strict limitations on both time window size T and sparsity s. For instance, with the VGG16 model and a fixed T of 6, the neuron sparsity rate must exceed 93% to ensure energy efficiency across most architectures. Inspired by our findings, we explore strategies to enhance energy efficiency by increasing sparsity. We introduce two regularization terms during training that constrain weights and activations, effectively boosting the sparsity rate. Our experiments on the CIFAR-10 dataset, using T of 6, show that our SNNs consume 69% of the energy used by optimized ANNs on spatial-dataflow architectures, while maintaining an SNN accuracy of 94.18%. This framework, developed using PyTorch, is publicly available for use and further research.

Submitted: Aug 29, 2024