Paper ID: 2409.09392
Topological Tensor Eigenvalue Theorems in Data Fusion
Ronald Katende
This paper introduces a novel framework for tensor eigenvalue analysis in the context of multi-modal data fusion, leveraging topological invariants such as Betti numbers. While traditional approaches to tensor eigenvalues rely on algebraic extensions of matrix theory, this work provides a topological perspective that enriches the understanding of tensor structures. By establishing new theorems linking eigenvalues to topological features, the proposed framework offers deeper insights into the latent structure of data, enhancing both interpretability and robustness. Applications to data fusion illustrate the theoretical and practical significance of the approach, demonstrating its potential for broad impact across machine learning and data science domains.
Submitted: Sep 14, 2024