Paper ID: 2409.09493

Hacking, The Lazy Way: LLM Augmented Pentesting

Dhruva Goyal, Sitaraman Subramanian, Aditya Peela

Security researchers are continually challenged by the need to stay current with rapidly evolving cybersecurity research, tools, and techniques. This constant cycle of learning, unlearning, and relearning, combined with the repetitive tasks of sifting through documentation and analyzing data, often hinders productivity and innovation. This has led to a disparity where only organizations with substantial resources can access top-tier security experts, while others rely on firms with less skilled researchers who focus primarily on compliance rather than actual security. We introduce "LLM Augmented Pentesting," demonstrated through a tool named "Pentest Copilot," to address this gap. This approach integrates Large Language Models into penetration testing workflows. Our research includes a "chain of thought" mechanism to streamline token usage and boost performance, as well as unique Retrieval Augmented Generation implementation to minimize hallucinations and keep models aligned with the latest techniques. Additionally, we propose a novel file analysis approach, enabling LLMs to understand files. Furthermore, we highlight a unique infrastructure system that supports if implemented, can support in-browser assisted penetration testing, offering a robust platform for cybersecurity professionals, These advancements mark a significant step toward bridging the gap between automated tools and human expertise, offering a powerful solution to the challenges faced by modern cybersecurity teams.

Submitted: Sep 14, 2024