Paper ID: 2409.10329
InfoDisent: Explainability of Image Classification Models by Information Disentanglement
Łukasz Struski, Jacek Tabor
Understanding the decisions made by image classification networks is a critical area of research in deep learning. This task is traditionally divided into two distinct approaches: post-hoc methods and intrinsic methods. Post-hoc methods, such as GradCam, aim to interpret the decisions of pre-trained models by identifying regions of the image where the network focuses its attention. However, these methods provide only a high-level overview, making it difficult to fully understand the network's decision-making process. Conversely, intrinsic methods, like prototypical parts models, offer a more detailed understanding of network predictions but are constrained by specific architectures, training methods, and datasets. In this paper, we introduce InfoDisent, a hybrid model that combines the advantages of both approaches. By utilizing an information bottleneck, InfoDisent disentangles the information in the final layer of a pre-trained deep network, enabling the breakdown of classification decisions into basic, understandable atomic components. Unlike standard prototypical parts approaches, InfoDisent can interpret the decisions of pre-trained classification networks and be used for making classification decisions, similar to intrinsic models. We validate the effectiveness of InfoDisent on benchmark datasets such as ImageNet, CUB-200-2011, Stanford Cars, and Stanford Dogs for both convolutional and transformer backbones.
Submitted: Sep 16, 2024