Paper ID: 2409.10772

Provably Efficient Infinite-Horizon Average-Reward Reinforcement Learning with Linear Function Approximation

Woojin Chae, Dabeen Lee

This paper proposes a computationally tractable algorithm for learning infinite-horizon average-reward linear Markov decision processes (MDPs) and linear mixture MDPs under the Bellman optimality condition. While guaranteeing computational efficiency, our algorithm for linear MDPs achieves the best-known regret upper bound of $\widetilde{\mathcal{O}}(d^{3/2}\mathrm{sp}(v^*)\sqrt{T})$ over $T$ time steps where $\mathrm{sp}(v^*)$ is the span of the optimal bias function $v^*$ and $d$ is the dimension of the feature mapping. For linear mixture MDPs, our algorithm attains a regret bound of $\widetilde{\mathcal{O}}(d\cdot\mathrm{sp}(v^*)\sqrt{T})$. The algorithm applies novel techniques to control the covering number of the value function class and the span of optimistic estimators of the value function, which is of independent interest.

Submitted: Sep 16, 2024