Paper ID: 2409.10848

3DFacePolicy: Speech-Driven 3D Facial Animation with Diffusion Policy

Xuanmeng Sha, Liyun Zhang, Tomohiro Mashita, Yuki Uranishi

Audio-driven 3D facial animation has made immersive progress both in research and application developments. The newest approaches focus on Transformer-based methods and diffusion-based methods, however, there is still gap in the vividness and emotional expression between the generated animation and real human face. To tackle this limitation, we propose 3DFacePolicy, a diffusion policy model for 3D facial animation prediction. This method generates variable and realistic human facial movements by predicting the 3D vertex trajectory on the 3D facial template with diffusion policy instead of facial generation for every frame. It takes audio and vertex states as observations to predict the vertex trajectory and imitate real human facial expressions, which keeps the continuous and natural flow of human emotions. The experiments show that our approach is effective in variable and dynamic facial motion synthesizing.

Submitted: Sep 17, 2024