Paper ID: 2409.10918

FSL-HDnn: A 5.7 TOPS/W End-to-end Few-shot Learning Classifier Accelerator with Feature Extraction and Hyperdimensional Computing

Haichao Yang, Chang Eun Song, Weihong Xu, Behnam Khaleghi, Uday Mallappa, Monil Shah, Keming Fan, Mingu Kang, Tajana Rosing

This paper introduces FSL-HDnn, an energy-efficient accelerator that implements the end-to-end pipeline of feature extraction, classification, and on-chip few-shot learning (FSL) through gradient-free learning techniques in a 40 nm CMOS process. At its core, FSL-HDnn integrates two low-power modules: Weight clustering feature extractor and Hyperdimensional Computing (HDC). Feature extractor utilizes advanced weight clustering and pattern reuse strategies for optimized CNN-based feature extraction. Meanwhile, HDC emerges as a novel approach for lightweight FSL classifier, employing hyperdimensional vectors to improve training accuracy significantly compared to traditional distance-based approaches. This dual-module synergy not only simplifies the learning process by eliminating the need for complex gradients but also dramatically enhances energy efficiency and performance. Specifically, FSL-HDnn achieves an Intensity unprecedented energy efficiency of 5.7 TOPS/W for feature 1 extraction and 0.78 TOPS/W for classification and learning Training Intensity phases, achieving improvements of 2.6X and 6.6X, respectively, Storage over current state-of-the-art CNN and FSL processors.

Submitted: Sep 17, 2024