Paper ID: 2409.11068

A Reinforcement Learning Environment for Automatic Code Optimization in the MLIR Compiler

Nazim Bendib, Iheb Nassim Aouadj, Riyadh Baghdadi

Code optimization is a crucial task aimed at enhancing code performance. However, this process is often tedious and complex, highlighting the necessity for automatic code optimization techniques. Reinforcement Learning (RL), a machine learning technique, has emerged as a promising approach for tackling such complex optimization problems. In this project, we introduce the first RL environment for the MLIR compiler, dedicated to facilitating MLIR compiler research, and enabling automatic code optimization using Multi-Action Reinforcement Learning. We also propose a novel formulation of the action space as a Cartesian product of simpler action subspaces, enabling more efficient and effective optimizations. Experimental results demonstrate that our proposed environment allows for an effective optimization of MLIR operations, and yields comparable performance to TensorFlow, surpassing it in multiple cases, highlighting the potential of RL-based optimization in compiler frameworks.

Submitted: Sep 17, 2024