Paper ID: 2409.11606

Three Degree-of-Freedom Soft Continuum Kinesthetic Haptic Display for Telemanipulation Via Sensory Substitution at the Finger

Jiaji Su, Kaiwen Zuo, Zonghe Chua

Sensory substitution is an effective approach for displaying stable haptic feedback to a teleoperator under time delay. The finger is highly articulated, and can sense movement and force in many directions, making it a promising location for sensory substitution based on kinesthetic feedback. However, existing finger kinesthetic devices either provide only one-degree-of-freedom feedback, are bulky, or have low force output. Soft pneumatic actuators have high power density, making them suitable for realizing high force kinesthetic feedback in a compact form factor. We present a soft pneumatic handheld kinesthetic feedback device for the index finger that is controlled using a constant curvature kinematic model. \changed{It has respective position and force ranges of +-3.18mm and +-1.00N laterally, and +-4.89mm and +-6.01N vertically, indicating its high power density and compactness. The average open-loop radial position and force accuracy of the kinematic model are 0.72mm and 0.34N.} Its 3Hz bandwidth makes it suitable for moderate speed haptic interactions in soft environments. We demonstrate the three-dimensional kinesthetic force feedback capability of our device for sensory substitution at the index figure in a virtual telemanipulation scenario.

Submitted: Sep 17, 2024