Paper ID: 2409.11703
Harnessing LLMs for API Interactions: A Framework for Classification and Synthetic Data Generation
Chunliang Tao, Xiaojing Fan, Yahe Yang
As Large Language Models (LLMs) advance in natural language processing, there is growing interest in leveraging their capabilities to simplify software interactions. In this paper, we propose a novel system that integrates LLMs for both classifying natural language inputs into corresponding API calls and automating the creation of sample datasets tailored to specific API functions. By classifying natural language commands, our system allows users to invoke complex software functionalities through simple inputs, improving interaction efficiency and lowering the barrier to software utilization. Our dataset generation approach also enables the efficient and systematic evaluation of different LLMs in classifying API calls, offering a practical tool for developers or business owners to assess the suitability of LLMs for customized API management. We conduct experiments on several prominent LLMs using generated sample datasets for various API functions. The results show that GPT-4 achieves a high classification accuracy of 0.996, while LLaMA-3-8B performs much worse at 0.759. These findings highlight the potential of LLMs to transform API management and validate the effectiveness of our system in guiding model testing and selection across diverse applications.
Submitted: Sep 18, 2024