Paper ID: 2409.12249

GCA-SUN: A Gated Context-Aware Swin-UNet for Exemplar-Free Counting

Yuzhe Wu, Yipeng Xu, Tianyu Xu, Jialu Zhang, Jianfeng Ren, Xudong Jiang

Exemplar-Free Counting aims to count objects of interest without intensive annotations of objects or exemplars. To achieve this, we propose Gated Context-Aware Swin-UNet (GCA-SUN) to directly map an input image to the density map of countable objects. Specifically, a Gated Context-Aware Modulation module is designed in the encoder to suppress irrelevant objects or background through a gate mechanism and exploit the attentive support of objects of interest through a self-similarity matrix. The gate strategy is also incorporated into the bottleneck network and the decoder to highlight the features most relevant to objects of interest. By explicitly exploiting the attentive support among countable objects and eliminating irrelevant features through the gate mechanisms, the proposed GCA-SUN focuses on and counts objects of interest without relying on predefined categories or exemplars. Experimental results on the FSC-147 and CARPK datasets demonstrate that GCA-SUN outperforms state-of-the-art methods.

Submitted: Sep 18, 2024