Paper ID: 2409.12817

Automated Linear Disturbance Mapping via Semantic Segmentation of Sentinel-2 Imagery

Andrew M. Nagel, Anne Webster, Christopher Henry, Christopher Storie, Ignacio San-Miguel Sanchez, Olivier Tsui, Jason Duffe, Andy Dean

In Canada's northern regions, linear disturbances such as roads, seismic exploration lines, and pipelines pose a significant threat to the boreal woodland caribou population (Rangifer tarandus). To address the critical need for management of these disturbances, there is a strong emphasis on developing mapping approaches that accurately identify forest habitat fragmentation. The traditional approach is manually generating maps, which is time-consuming and lacks the capability for frequent updates. Instead, applying deep learning methods to multispectral satellite imagery offers a cost-effective solution for automated and regularly updated map production. Deep learning models have shown promise in extracting paved roads in urban environments when paired with high-resolution (<0.5m) imagery, but their effectiveness for general linear feature extraction in forested areas from lower resolution imagery remains underexplored. This research employs a deep convolutional neural network model based on the VGGNet16 architecture for semantic segmentation of lower resolution (10m) Sentinel-2 satellite imagery, creating precise multi-class linear disturbance maps. The model is trained using ground-truth label maps sourced from the freely available Alberta Institute of Biodiversity Monitoring Human Footprint dataset, specifically targeting the Boreal and Taiga Plains ecozones in Alberta, Canada. Despite challenges in segmenting lower resolution imagery, particularly for thin linear disturbances like seismic exploration lines that can exhibit a width of 1-3 pixels in Sentinel-2 imagery, our results demonstrate the effectiveness of the VGGNet model for accurate linear disturbance retrieval. By leveraging the freely available Sentinel-2 imagery, this work advances cost-effective automated mapping techniques for identifying and monitoring linear disturbance fragmentation.

Submitted: Sep 19, 2024