Paper ID: 2409.12849
A Margin-Maximizing Fine-Grained Ensemble Method
Jinghui Yuan, Hao Chen, Renwei Luo, Feiping Nie
Ensemble learning has achieved remarkable success in machine learning, but its reliance on numerous base learners limits its application in resource-constrained environments. This paper introduces an innovative "Margin-Maximizing Fine-Grained Ensemble Method" that achieves performance surpassing large-scale ensembles by meticulously optimizing a small number of learners and enhancing generalization capability. We propose a novel learnable confidence matrix, quantifying each classifier's confidence for each category, precisely capturing category-specific advantages of individual learners. Furthermore, we design a margin-based loss function, constructing a smooth and partially convex objective using the logsumexp technique. This approach improves optimization, eases convergence, and enables adaptive confidence allocation. Finally, we prove that the loss function is Lipschitz continuous, based on which we develop an efficient gradient optimization algorithm that simultaneously maximizes margins and dynamically adjusts learner weights. Extensive experiments demonstrate that our method outperforms traditional random forests using only one-tenth of the base learners and other state-of-the-art ensemble methods.
Submitted: Sep 19, 2024