Paper ID: 2409.12878

Impact of ML Optimization Tactics on Greener Pre-Trained ML Models

Alexandra González Álvarez, Joel Castaño, Xavier Franch, Silverio Martínez-Fernández

Background: Given the fast-paced nature of today's technology, which has surpassed human performance in tasks like image classification, visual reasoning, and English understanding, assessing the impact of Machine Learning (ML) on energy consumption is crucial. Traditionally, ML projects have prioritized accuracy over energy, creating a gap in energy consumption during model inference. Aims: This study aims to (i) analyze image classification datasets and pre-trained models, (ii) improve inference efficiency by comparing optimized and non-optimized models, and (iii) assess the economic impact of the optimizations. Method: We conduct a controlled experiment to evaluate the impact of various PyTorch optimization techniques (dynamic quantization, torch.compile, local pruning, and global pruning) to 42 Hugging Face models for image classification. The metrics examined include GPU utilization, power and energy consumption, accuracy, time, computational complexity, and economic costs. The models are repeatedly evaluated to quantify the effects of these software engineering tactics. Results: Dynamic quantization demonstrates significant reductions in inference time and energy consumption, making it highly suitable for large-scale systems. Additionally, torch.compile balances accuracy and energy. In contrast, local pruning shows no positive impact on performance, and global pruning's longer optimization times significantly impact costs. Conclusions: This study highlights the role of software engineering tactics in achieving greener ML models, offering guidelines for practitioners to make informed decisions on optimization methods that align with sustainability goals.

Submitted: Sep 19, 2024