Paper ID: 2409.12900
Recognition of Harmful Phytoplankton from Microscopic Images using Deep Learning
Aymane Khaldi, Rohaifa Khaldi
Monitoring plankton distribution, particularly harmful phytoplankton, is vital for preserving aquatic ecosystems, regulating the global climate, and ensuring environmental protection. Traditional methods for monitoring are often time-consuming, expensive, error-prone, and unsuitable for large-scale applications, highlighting the need for accurate and efficient automated systems. In this study, we evaluate several state-of-the-art CNN models, including ResNet, ResNeXt, DenseNet, and EfficientNet, using three transfer learning approaches: linear probing, fine-tuning, and a combined approach, to classify eleven harmful phytoplankton genera from microscopic images. The best performance was achieved by ResNet-50 using the fine-tuning approach, with an accuracy of 96.97%. The results also revealed that the models struggled to differentiate between four harmful phytoplankton types with similar morphological features.
Submitted: Sep 19, 2024