Paper ID: 2409.13179
ConvLSTMTransNet: A Hybrid Deep Learning Approach for Internet Traffic Telemetry
Sajal Saha, Saikat Das, Glaucio H.S. Carvalho
In this paper, we present a novel hybrid deep learning model, named ConvLSTMTransNet, designed for time series prediction, with a specific application to internet traffic telemetry. This model integrates the strengths of Convolutional Neural Networks (CNNs), Long Short-Term Memory (LSTM) networks, and Transformer encoders to capture complex spatial-temporal relationships inherent in time series data. The ConvLSTMTransNet model was evaluated against three baseline models: RNN, LSTM, and Gated Recurrent Unit (GRU), using real internet traffic data sampled from high-speed ports on a provider edge router. Performance metrics such as Mean Absolute Error (MAE), Root Mean Squared Error (RMSE), and Weighted Absolute Percentage Error (WAPE) were used to assess each model's accuracy. Our findings demonstrate that ConvLSTMTransNet significantly outperforms the baseline models by approximately 10% in terms of prediction accuracy. ConvLSTMTransNet surpasses traditional models due to its innovative architectural features, which enhance its ability to capture temporal dependencies and extract spatial features from internet traffic data. Overall, these findings underscore the importance of employing advanced architectures tailored to the complexities of internet traffic data for achieving more precise predictions.
Submitted: Sep 20, 2024