Paper ID: 2409.13280

Efficient Training of Deep Neural Operator Networks via Randomized Sampling

Sharmila Karumuri, Lori Graham-Brady, Somdatta Goswami

Neural operators (NOs) employ deep neural networks to learn mappings between infinite-dimensional function spaces. Deep operator network (DeepONet), a popular NO architecture, has demonstrated success in the real-time prediction of complex dynamics across various scientific and engineering applications. In this work, we introduce a random sampling technique to be adopted during the training of DeepONet, aimed at improving the generalization ability of the model, while significantly reducing the computational time. The proposed approach targets the trunk network of the DeepONet model that outputs the basis functions corresponding to the spatiotemporal locations of the bounded domain on which the physical system is defined. Traditionally, while constructing the loss function, DeepONet training considers a uniform grid of spatiotemporal points at which all the output functions are evaluated for each iteration. This approach leads to a larger batch size, resulting in poor generalization and increased memory demands, due to the limitations of the stochastic gradient descent (SGD) optimizer. The proposed random sampling over the inputs of the trunk net mitigates these challenges, improving generalization and reducing memory requirements during training, resulting in significant computational gains. We validate our hypothesis through three benchmark examples, demonstrating substantial reductions in training time while achieving comparable or lower overall test errors relative to the traditional training approach. Our results indicate that incorporating randomization in the trunk network inputs during training enhances the efficiency and robustness of DeepONet, offering a promising avenue for improving the framework's performance in modeling complex physical systems.

Submitted: Sep 20, 2024