Paper ID: 2409.13347
V-Hands: Touchscreen-based Hand Tracking for Remote Whiteboard Interaction
Xinshuang Liu, Yizhong Zhang, Xin Tong
In whiteboard-based remote communication, the seamless integration of drawn content and hand-screen interactions is essential for an immersive user experience. Previous methods either require bulky device setups for capturing hand gestures or fail to accurately track the hand poses from capacitive images. In this paper, we present a real-time method for precise tracking 3D poses of both hands from capacitive video frames. To this end, we develop a deep neural network to identify hands and infer hand joint positions from capacitive frames, and then recover 3D hand poses from the hand-joint positions via a constrained inverse kinematic solver. Additionally, we design a device setup for capturing high-quality hand-screen interaction data and obtained a more accurate synchronized capacitive video and hand pose dataset. Our method improves the accuracy and stability of 3D hand tracking for capacitive frames while maintaining a compact device setup for remote communication. We validate our scheme design and its superior performance on 3D hand pose tracking and demonstrate the effectiveness of our method in whiteboard-based remote communication. Our code, model, and dataset are available at this https URL.
Submitted: Sep 20, 2024