Paper ID: 2409.13363
FPBoost: Fully Parametric Gradient Boosting for Survival Analysis
Alberto Archetti, Eugenio Lomurno, Diego Piccinotti, Matteo Matteucci
Survival analysis is a critical tool for analyzing time-to-event data and extracting valuable clinical insights. Recently, numerous machine learning techniques leveraging neural networks and decision trees have been developed for this task. Among these, the most successful approaches often rely on specific assumptions about the shape of the modeled hazard function. These assumptions include proportional hazard, accelerated failure time, or discrete estimation at a predefined set of time points. In this study, we propose a novel paradigm for survival model design based on the weighted sum of individual fully parametric hazard contributions. We build upon well-known ensemble techniques to deliver a novel contribution to the field by applying additive hazard functions, improving over approaches based on survival or cumulative hazard functions. Furthermore, the proposed model, which we call FPBoost, is the first algorithm to directly optimize the survival likelihood via gradient boosting. We evaluated our approach across a diverse set of datasets, comparing it against a variety of state-of-the-art models. The results demonstrate that FPBoost improves risk estimation, according to both concordance and calibration metrics.
Submitted: Sep 20, 2024