Paper ID: 2409.13513

Efficient and Discriminative Image Feature Extraction for Universal Image Retrieval

Morris Florek, David Tschirschwitz, Björn Barz, Volker Rodehorst

Current image retrieval systems often face domain specificity and generalization issues. This study aims to overcome these limitations by developing a computationally efficient training framework for a universal feature extractor that provides strong semantic image representations across various domains. To this end, we curated a multi-domain training dataset, called M4D-35k, which allows for resource-efficient training. Additionally, we conduct an extensive evaluation and comparison of various state-of-the-art visual-semantic foundation models and margin-based metric learning loss functions regarding their suitability for efficient universal feature extraction. Despite constrained computational resources, we achieve near state-of-the-art results on the Google Universal Image Embedding Challenge, with a mMP@5 of 0.721. This places our method at the second rank on the leaderboard, just 0.7 percentage points behind the best performing method. However, our model has 32% fewer overall parameters and 289 times fewer trainable parameters. Compared to methods with similar computational requirements, we outperform the previous state of the art by 3.3 percentage points. We release our code and M4D-35k training set annotations at this https URL.

Submitted: Sep 20, 2024