Paper ID: 2409.13533

Using High-Level Patterns to Estimate How Humans Predict a Robot will Behave

Sagar Parekh, Lauren Bramblett, Nicola Bezzo, Dylan P. Losey

A human interacting with a robot often forms predictions of what the robot will do next. For instance, based on the recent behavior of an autonomous car, a nearby human driver might predict that the car is going to remain in the same lane. It is important for the robot to understand the human's prediction for safe and seamless interaction: e.g., if the autonomous car knows the human thinks it is not merging -- but the autonomous car actually intends to merge -- then the car can adjust its behavior to prevent an accident. Prior works typically assume that humans make precise predictions of robot behavior. However, recent research on human-human prediction suggests the opposite: humans tend to approximate other agents by predicting their high-level behaviors. We apply this finding to develop a second-order theory of mind approach that enables robots to estimate how humans predict they will behave. To extract these high-level predictions directly from data, we embed the recent human and robot trajectories into a discrete latent space. Each element of this latent space captures a different type of behavior (e.g., merging in front of the human, remaining in the same lane) and decodes into a vector field across the state space that is consistent with the underlying behavior type. We hypothesize that our resulting high-level and course predictions of robot behavior will correspond to actual human predictions. We provide initial evidence in support of this hypothesis through a proof-of-concept user study.

Submitted: Sep 20, 2024