Paper ID: 2409.13792

Continual Learning for Multimodal Data Fusion of a Soft Gripper

Nilay Kushawaha, Egidio Falotico

Continual learning (CL) refers to the ability of an algorithm to continuously and incrementally acquire new knowledge from its environment while retaining previously learned information. A model trained on one data modality often fails when tested with a different modality. A straightforward approach might be to fuse the two modalities by concatenating their features and training the model on the fused data. However, this requires retraining the model from scratch each time it encounters a new domain. In this paper, we introduce a continual learning algorithm capable of incrementally learning different data modalities by leveraging both class-incremental and domain-incremental learning scenarios in an artificial environment where labeled data is scarce, yet non-iid (independent and identical distribution) unlabeled data from the environment is plentiful. The proposed algorithm is efficient and only requires storing prototypes for each class. We evaluate the algorithm's effectiveness on a challenging custom multimodal dataset comprising of tactile data from a soft pneumatic gripper, and visual data from non-stationary images of objects extracted from video sequences. Additionally, we conduct an ablation study on the custom dataset and the Core50 dataset to highlight the contributions of different components of the algorithm. To further demonstrate the robustness of the algorithm, we perform a real-time experiment for object classification using the soft gripper and an external independent camera setup, all synchronized with the Robot Operating System (ROS) framework.

Submitted: Sep 20, 2024